The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 4X 1 1 1 3X 1 1 1 1 0 1 1 1 3X 1 1 1 1 1 1 1 1 1 0 1 1 X 4X 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 2X 0 3X 1 1 1 1 4X 1 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4 2 2X+4 X+3 3 1 X+4 4X+2 1 X+3 4X+3 0 1 4 2 2X+2 1 1 3X+4 2X+4 4X+1 1 4X+4 3X+2 2X+3 2X+3 4X+3 2X+2 2 2X 3X+3 1 4X 3X 1 0 3X+2 4X X+1 1 X 3X 4X+4 3X+1 X+3 2X+2 1 3 4 4X+1 4X+4 X+4 X+2 X+1 4X+4 3X+4 1 1 1 4X 2 4X+3 1 1 X+1 X+3 X 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X X+2 2X+2 3X X+1 4X+3 2 1 0 1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4 3X 3X+1 3 2X+1 3X+4 2X 4X+4 X 4X+1 4X+4 3X 3X+3 2X+2 3 3X+2 2X+4 4X+1 4X+3 1 X+1 3X+4 4X+1 X+2 3X+3 4X 2 2X+3 2 3 X+1 X 1 3X 2X+3 4X+4 3X+2 X+3 4X+3 2X+2 X+4 2 3 3X+1 0 3 2X+2 0 3X+1 X+2 2X generates a code of length 79 over Z5[X]/(X^2) who´s minimum homogenous weight is 305. Homogenous weight enumerator: w(x)=1x^0+448x^305+1160x^306+940x^307+320x^308+220x^309+1248x^310+1520x^311+720x^312+220x^313+400x^314+668x^315+1200x^316+800x^317+180x^318+260x^319+748x^320+900x^321+420x^322+140x^323+20x^324+752x^325+720x^326+380x^327+100x^328+80x^329+260x^330+500x^331+240x^332+40x^333+20x^334 The gray image is a linear code over GF(5) with n=395, k=6 and d=305. This code was found by Heurico 1.16 in 0.578 seconds.